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In this paper, we want to present a simple and efficient numerical method for SHG analysis in one-dimensional photonic 
crystals (PhCs) based on full nonlinear system of equations. For solving the nonlinear SHG problem we used a simple 
method of finite elements coupled with fixed point iteration. Our model does not need additional analytic approximation 
compared with some existing methods, and it can be easily extended to study the SHG problem in two-dimensional 
photonic crystals. We used the FlexPDE Professional program to plot the diagrams varying the parameters. At the end we 
obtained two maximum intensities of the second harmonic wave within each high index layer, that being in contrast to the 
fundamental wave peak. This result can be found also in the literature. In addition, we have plotted the lattice using the 
Optiwave FDTD software and we  observed the propagation of the field in time. 
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1. Introduction 
 

Photonic crystals are periodic structures with the 

periodicity proportional to the wavelength of the 

electromagnetic wave (Fig. 1.1), having a forbidden band 

which blocks the propagation of light in a specific 

frequency range [1-4]. This property allows control over 

light effects that would otherwise be very difficult to 

control with conventional optics [5-8]. 

 

 
 

Fig. 1. The path of an electromagnetic wave in a periodic 

structure with the network constant “a”. 

 

 

In recent years, progress in photonic technology has 

generated a trend toward integration of electronic and 

photonic devices. The latter offer several advantages over 

the former: high working speed, size, good reliability.  

A class of photonic materials that were created 

theoretically and experimentally in 1991 by E. 

Yablonovitch are materials with "photonic band gap” 

(PBG), which are known as "photonic crystals"[1,13].  

 
 

Fig. 2.  Examples of 1D,2D,3D PhCs. Different colors 

represent materials with different dielectric constant.  

 

 

In the last few years, nonlinear optical processes such 

as second harmonic generation (SHG) in nonlinear 

photonic crystals have attracted a great interest. Nonlinear 

photonic crystals offer unique and fundamental methods of 

enhancing various nonlinear optical processes [9-12]. 

We used nonlinear Helmholtz equations [2-4], which 

are based on Maxwell's equations. The nonlinear problem 

has a unique solution only if the importance of the 

nonlinear susceptibility tensor is not too large. 

We solved the scalar nonlinear Helmholtz system 

using a combination of finite elements method and fixed 

point iterations. To find the solutions of nonlinear 

equations we replaced the unknown functions repeatedly 

from the right side with the previous approximations.  

This model does not require any additional analytical 

approximations and it can be easily extended to two-

dimensional structures of photonic crystals. 

There are two ways to improve the second harmonic 

generation in nonlinear photonic crystals. The first one is 

to adjust simultaneously the fundamental wave frequencies 
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and the second harmonic wave (SHW) to the localized 

frequencies at the photonic band edge. The second one is 

to introduce defects coming from the nonlinear materials 

in photonic crystals. 

Using the first method, the density of the 

electromagnetic fields increases, and phase superposing 

can occur. Thus, the second harmonic generation will be 

improved. In the second method, we improve the 

generation of the second harmonic using strong localized 

fields in the defect area.  

 

2. Nonlinear problem 
 

We consider a nonlinear material with N layers. The 

structure is considered periodic along the z direction, for 

 , and the media is considered to be non-

magnetic with a constant magnetic permittivity. 

Considering that the fundamental frequency and the SHW 

are given in the transverse electric polarization (TE), the 

equations for SHG are: 
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where  and  are the electric fields for the fundamental 

frequency (FF) x and for the SH frequency 2x.  is the 

complex conjugate,  is the wave number in 

vacuum,  c is the speed of light in vacuum,  and  are 

the refractive indices of ω and 2 ω, and  and  are 

two second order elements of  the nonlinear susceptibility 

tensors for ω and 2 ω. 

We assume that the structure is linear for z < 0 and z 

> D. The nonlinear structure of the PhC is situated 

between two linear materials with refractive index  (z < 

0) and  (z > D). 

When the incident light is normal on the sample 

surface along the z direction we have:  

 a) region z < 0 

     ziEziEzE arai  expexp 11 
 

   ziEzE ar exp22 
, 

where the incident electric field is 

and  

and are reflectivity constants for ω 

and 2 ω frequencies. 

 b) region z > D 

   ziEzE bt  exp21  

   ziEzE bt  exp22  
where  are 

transmittance constants for ω and 2 ω frequencies. 

The tangential components of E and H must be 

continuous at the boundary, which define the interface 

between the two homogeneous materials, and the normal 

components of D and H must be continuous at the 

boundary for all frequencies. Because the tangential 

components of   and  are continuous for z = 0 and z = 

D, we obtain the following boundary conditions for the 

first and the last point: 
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From (3) to (10) we obtain: 
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We define the domain . We must solve the 

coupled nonlinear Helmholtz equations (1) and (2) in , 

using the previous boundary conditions (12) - (14). 
 

 

3. Numerical method 
 

We solve the nonlinear problem with a combination 

between the finite elements method and fixed point 

iterations. We consider a test function ψ. The variational 
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problem corresponding to our nonlinear equations could 

come from the classical variational technique. 

     We first multiply both sides of equations (2.1) and 

(2.2) with , then we integrate on the domain . The 

result is: 
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where  is the complex conjugate of ψ. Since the usual 

boundary conditions at the interface between two 

homogeneous materials are valid we have: 

 

   

 

where   is the "jump" at the interface . We 

use integration by parts and the boundary conditions (2.12) 

- (2.14), and we obtain the following variational relation: 
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The solution of equations (1) and (2) taking into 

consideration the boundary conditions (12) - (14) gives the 

solution for the variational problem (15) and (16).  

 For a given  the variational problem has a unique 

solution  when the product between   

and is not too high. The nonlinear 

variational problem (15) and (6) is well determined too, 

and we can calculate the unique solution of the SHG 

problem in the nonlinear 1D PhC structures. 

Our problem can be solved by repetitive replacement 

of  with the previous approximations on the 

right side, using the solution from (15).  

The numerical diagram is divided into the following 

steps: 

Step 1: Use the finite elements method to find , 

when  satisfies: 
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Step 2: Use the finite elements method to find , 

when  satisfies: 
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     Step 3: For k = 0, 1, 2,…, find  and  

when resolving the variational problem (15) and (16) with 

  on the right side. 

    Our numerical method combines the fixed point 

iterations for the nonlinear problem and the finite elements 

method for each variational equation.  

     The iteration scheme is no longer valid when the 

intensity of the incident electric field or the product 

between   and   is very high. 

It is well known that the majority of nonlinear optical 

materials have a very low nonlinear susceptibility. For all 

conventional materials the convergence of our method is 

rapid [5-10]. 

 

 

4. Numerical results 
 

Numerically, we tested our method on a simple 

structure made of a nonlinear material with N layers, 

surrounded by vacuum. It is a one-dimensional system 

composed of 40 dielectric layers and the refractive index 

alternates between a high and a low value, 

 and . For a reference 

wavelength , layers are  and 

 thick. Since the background medium is 

vacuum, we have . 

The efficiency of SHG conversion in nonlinear PhC 

can grow, while we simultaneously adjust the frequencies 

of the fundamental wave (FW) and of the SHW for the 

localized frequencies at the edge of photonic band. Thus, 

we investigate the generation of the SHW near the low 

frequency from the photonic band edge: Ω≈0.6.  

We fix  and  and we take a 

small value for the nonlinear susceptibility tensor 

. We assume that nonlinearity is 

uniformly distributed on the PBG structure. We calculate 

the SH field for a number of frequencies when the 

incidence wave is . 

The absolute value of the SHW at z=D versus Ω for 

the FF is shown in Fig. 3. The huge amplification of SHG 

occurs when the frequency of an incident wave at a low 
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frequency is carried away at the end of the band and it has 

a maximum value for Ω=0.592.  

 

 
 

Fig. 3. The absolute value of SHG wave at  z=D versus Ω. 

 

 

     In fig. 4 we represented the absolute value of the FF 

field and SH field for Ω=0.592. The FF is increased with 

more than one order of magnitude compared to the peak 

value outside the structure. So, the conversion efficiency 

of SHG should increase significantly. Because of the 

wavelength of the SH signal, which is half of the pumped 

wave, there are two maximum intensities of the SH wave 

within each high index layer (in contrast to the FW peak). 

 

 

 
 

 

 

 
 

Fig. 4. The absolute value of the FF field and the SH  

field: the first one is the FW and second one is the SHW. 

 
 

Fig. 5. The absolute value of the SH field: the first one is 

the fundamental wave at Ω=0.575 and the second one is 

the fundamental wave at Ω=0.550. 

 

 

The Optiwave FDTD Software has three basic 

components:  

- OptiFDTD_Profile Designer, where the materials used in 

the simulations are defined. 

- OptiFDTD_Designer, where crystal structures are 

constructed, based on the materials defined in the Profile 

Designer. 

- OptiFDTD_Analyzer, where the results obtained in the 

simulations are studied. 

We have designed with OptiFDTD Designer a 1D 

photonic crystal structure using air as basic element (ε1=1) 

and a photonic band gap cell lattice with ε2=2.0408. The 

materials were previously defined in the Profile Desiger. 

The lattice constant is a=0.6µm and layers are 

 and  thick.  

The results returned by Opti_FDTD Analyzer showed 

that the wave goes from entrance to exit with 25.04% 

losses. Losses of the beam energy are determined by 

absorption in the material and various nonlinear effects.  
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Fig. 6.  The 1D photonic crystal lattice and field maps 

 
            

 
 

Fig. 7. Field maps for SH. 

 

 

     The second example is a PhC with defect. The 

perfect PhC is designed to be composed of standard 

materials N layers.  We chose  and air with 

nonlinear, respectively linear layers. The parameters of the 

1D PhC structure are the following: the thickness and 

refractive indices of linear and nonlinear layers are 

,  , , 

. 

     The second order nonlinear coefficient of the 

 layers is assumed to be  

and the refractive index of  for the SH frequency 

is . The incident wave is 

  .     If the perfect structure is 

affected in any way the result of any permitted states at 

PBG may produce a rise of the field in the defect. Because 

of the nonlinearity of the material, SHG can grow 

significantly. We introduce a defect by changing the 

central layer thickness (the 15th layer of a total of 29 

layers) from 0.304 to 0.737µm. We study the generation of 

the SHW around the fundamental wavelength 

. 
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Fig. 8 The absolute value of SHW generation for a 

photonic crystal with defect at z=D . 

 

 

 The absolute value of the FF and the SH fields at 

the fundamental wavelength  in this 

structure with a defect is shown in Fig. 9. 

 

 

 
 

 

 
 

Fig. 9. The absolute value of FF field and of the SH field 

for the example with defect: the first one is the FW and 

the second one is the SH wave. 

 

 

The fundamental frequency field and the second 

harmonic field from the defect grow simultaneously. 

 

 
a 

 
b 

Fig. 10. The 1D photonic crystal lattice with defect on 

the 15th cell and field maps for FW (a) and for SH (b) 

 

 

5. Conclusions 
 

As a conclusion to fig. 5 we can add that we are 

dealing with a resonant character of the transfer 

characteristic of the photonic crystal. It allows to pass a 

frequency band, but the quality factor is different. This is 

explained by the dependence of the amplitude by the 

frequency. 

     We have presented a simple and efficient numerical 

method for the analysis of SHG in one-dimensional 

photonic crystals based on the fully nonlinear equations. 

The entire SHG nonlinear problem is solved by a simple a 

combination of finite elements method and fixed point 

iterations. In contrast with other methods our model does 

not require additional analytical approximations and it is 

easily extended for studying the problem of SHG in two-

dimensional photonic crystals.  

Because the nonlinear optical materials have very low 

nonlinear susceptibility, our method converges rapidly. 

Generally, less than ten repetitive steps are sufficient. 

We used the FlexPDE Professional program to plot 

the diagrams varying the parameters. At the end we 
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obtained two maximum intensities of the second harmonic 

wave within each high index layer, that being in contrast 

to the fundamental wave peak. This result is also found in 

the literature.  

In addition, we build a 1D photonic crystal lattice and 

we show the distribution of the field intensity using a 

FDTD (Finite Difference Time Domain) method. 

 

 

Acknowledgement 

 

This work was in part funded by the UEFISCDI 

PCCE ID_76/2009 Project. 

 

 

References 
 

  [1] J. D. Joannopoulos, R. D. Meade, J. N. Winn,  

        Photonic Crystals: Molding the Flow of Light.  

        Princeton, NJ:  Princeton University Press(1995). 

  [2] J. Yuan, et al., Optics Communications,  

         282(13), 2628 (2009). 

  [3] M. Scalora, M.J. Bloemer, et al., Phys. Rev. A,  

        56,  3166 (1997). 

  [4] F. Ren, R. Li, et al., Phys. Rev. B, 70, 245109 (2004). 

  [5] Sterian, A.R. (2007). Computer modeling of the  

        coherent optical amplifier and laser  

         systems, Proceedings of Computational Science and  

         Its Applications, ICCSA 2007, Pt 1, 4705436-449,  

         Editor(s): Gervasi, O; Gavrilova  M.L., (2007). 

  [6] Sterian, A. R. & Ninulescu, V. (2005). Nonlinear  

        Phenomena in Erbium-Doped Lasers, Lecture Notes  

        in Computer Science, LNCS 3482, 643-650, Gervasi,  

        O.et al. (Eds), Springer – Verlag, (2005), Berlin,  

        Heidelberg.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  [7] Petrescu, A.; Sterian, A. R.& Sterian, P.E. (2007).  

        Solitons propagation in optical fibers: computer  

        experiments for  students training, Proceedings of  

        Computational Science and Its Applications, ICCSA  

        2007, Pt 1, 4705450-461, Editor(s): Gervasi, O;  

        Gavrilova M.L., (2007). 

  [8] Ninulescu, V.& Sterian, A. R. (2005). Dynamics of a  

        Two-Level Medium Under the Action of Short  

        Optical Pulses, Lecture Notes in Computer Science,  

        LNCS 3482, 635-642, Gervasi, O.et al. (Eds),  

        Springer – Verlag, (2005), Berlin, Heidelberg. 

  [9] Ninulescu, V.; Sterian, A. R. & Sterian, P. (2006).  

        Dynamics of a two-mode erbium-doped fiber laser,  

        Proceedings of SPIE,  Vol. 6344, 63440 Q1 –  

        63440Q6, ALT-05, (Editors: Ivan A. Shcherbakov  

        ş.a.), June (2006), Tianjin.– Verlag, (2005), Berlin,  

        Heidelberg.  

[10] E. N. Stefanescu, Sterian, A. R. & Sterian, P. E.  

        Proceedings of SPIE, 5850, 160 (2005). Advanced  

        Laser Tehnologies 2004, edited by A. Giardini,  

        V. Konov, V. Pustavoy, (2005), Rome. 

[11] M. Dima, M. Dulea, D. Aranghel et al., Optoelectron. 

         Adv. Mater. – Rapid Commun. 4(11), 1840 (2010). 

[12] C. Iliescu, M. Avram, B. Chen, et al., J. Optoelectron. 

          Adv. Mater. 13(2-4), 387 (2011).  

 [13] D. Mihalache, Recent trends in micro- and 

         nanophotonics: A personal selection. J. Optoelectron. 

        Adv. Mater. Vol. 13( 9), 1055 (2011). 

 

 

 

____________________________ 
*
Corresponding author: popescu_dana_personal@yahoo.com 

 

mailto:popescu_dana_personal@yahoo.com

